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The present paper is devoted to an investigation of the influencedifitive lossesupon the spatial
dynamics ofself-consistentvaveguide channels that are localized near interfaces between linear and Kerr-type
nonlinear dielectric media. It is shown that the radiative effects, through their dependence on the intensity of
the electromagnetic fields, the initial channel position, and its angle of inclination to an interface, can lead
either to the total disappearance of a nonlinear channel formation, or to its displacement, deep into the
nonlinear medium, as a consequence of the loss of some part of the initial energy. The nonlinear interaction of
self-consistent channels with externally incident, stimulating, beams is studied, and stability of the resulting
steady states is determined. In order to carry out these investigations, an original approach is used that is based
on the assumption of a small overlap between externally incident waves and the internal, nonlinear, quasilo-
calized eigenmode. It is shown that this method permits equations to be obtained that determine the spatial
dynamics of channel energy, and position, together with the structure of the scattered Sit0®3-
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PACS numbdis): 42.25.Gy

I. INTRODUCTION nied by a more complicated, spatially inhomogeneous, dy-
namic regime. In this context, it is interesting that numerical
The interaction of strong electromagnetic fields with calculations of stationary scattering of wave beams by non-
nonlinear/nonlinear or linear/nonlinear interfaces, generatetinear interface$9-14 reveal the presence of filamentation
with dielectric media, is an important area of modern optics©Of transmitted radiation that look rather like the plane wave
One of the most interesting aspects of such problems is théase, at higher thresholds. For this case, the number of fila-
penetration of radiation into a nonlinear medium with subseMents depends upon the superthreshold value of the incident
quent self-focusing properties, when wave packets are incf-adiation. The_pOSS|b|I|ty of a giant, nonlinear, shift of the
dent upon a linear/nonlinear interface, at an angle greatdf€Nter of gravity of the reflected beam can also be demon-
than is necessary for total internal reflection. Within theStrated9—14l. This giant shift, in contrast to the well-known

framework of an elegant stationary state theory, using plan%:]ear Goos-Hachen effect[15,1§, can be much greater

. . . than the incident beam width. In some papgd,17], such a
waves, Kaplarj1-6] predicted the appearance of optical bi- . . K . i .
stability in the reflectivity, and stimulated transparency.glant nonlinear Goos-Hechen effect is associated with the

.. L I excitation of the unstable branch of a nonlinear surface wave
These papers led to activity which is still vigorous today.

. [18-22, but, in the paper by Aliewt al. [10], the giant
Bistable effects were soon obsenj&d, and the transparency Goos-Hachen effect is explained in terms of the excitation

threshold of a nonlinear medium was measured. Indeed, a 5 near-surface, nonlinear, weakly radiative, self-consistent
even earlier predictiofi8] that the stationary, spatially ho- channel (nonlinear quasilocalized moyehat provides an
mogeneous, transparency regime of a self-focusing mediulectromagnetic energy transfer along the interface. Also, the
is unstable is now accepted as well known. It follows fromyrajectories of the excited self-consistent channels are very
this property that, when certain power thresholds are exsensitive[10] to any changes in the parameters of the inci-
ceeded, by increasing the amplitude of a wave incident upodent radiation, such as amplitude, angle of incidence and
an interface between linear and nonlinear media, a dynamiteam width variation.

or inhomogeneous, superthreshold regime will occur. In fact, It is clear, then, that the scattering of wave beams, which
the first two-dimensional numerical calculations of the re-are incident upon the interface between a linear and a non-
flection of a plane wave in this superthreshold regifig¢  linear medium, at angles of incidence greater than the critical
showed that an electromagnetic field penetrates into the nomne for total internal reflection, is determined by the nature
linear medium in the form of self-sustaining channg@lla-  of the interaction between self-consistent waveguides excited
ment3. These channels form a periodic grating, whose peinto nonlinear medium and any pump wave. The scattering is
riod depends upon how much the incident wave amplitudelso determined by energy emission from them, through the
exceeds the threshold value. The reflected field, on the othémterface. It is important to note, however, that self-
hand, assumes the form efectromagnetic jetsVery recent consistent channels have a width that is of the order of the
theoretical investigations shoyd0] that transparency can dimension of the skin layer, and that it is weakly coupled to
also occur together with the periodic generation of solitonsthe pump wave. It is necessary, therefore, to investigate the
which run deep into the nonlinear medium, or are accompaspatial dynamics of nonlinear self-focused waveguides that
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have small radiation losses in the presence of a pump wave,
as well as in the free-emission regime. In this connection, as linear €
far as analytical results currently available in the literature 1
[23,25 are concerned, it appears that they deal with the so-
lution of very specific problems. In particular, they involve
the interactior(reflection and transmissipof self-consistent nonlinear E(ED=E,+ |EP
channels with the interface between two nonlinear Kerr-like E
media which have very similar physical properties, and are A
close enough to each other for an equivalent particle method

to be used. The interface in such theofi28—2€ is consid- FIG. 1. The linear/nonlinear interface.

ered to be a small perturbation to the nonlinear Sdimger , . )
equation, and the transverse structure of the channels is a¥here » is the angular frequencye(w)=E is the Fourier
sumed to be invariant. In spite of the fact that this interestin?MPlitude of the electric field, and c.c. denotes the complex
theoretical approacf23—26 does predict a number of im- cor_uugate. iny a nonlmear medium with self-focusing prop-
portant effects, it has to be admitted that it cannot be applie§ti€S 1S going to be considered here, so that

to problems involving wide wave packet scattering by non- PR

linear interfaces, because of the nonradiative character of the —=1>0,

channel, or to an interface between media with widely dif- |

fering nonlinear prop_erties. Recent theory, based upon aj order to be specific, it is assumed thate,=&(|E[?=0),
energy transfer equatidi0], does account for such strongly gnd that the wave fields asepolarized, i.e. E=EY, wherey

differing properties, by dealing with a Iinear/rjonlinear ir'1ter7 is a unit vector along thg direction. The basic wave equa-
face, and the generation of filaments and soliton formation %5 is now

the vicinity of the skin layer. However, it does not include
any interaction of the channels with the pump wave, after the V2E+k3e(z,|E|?)E=0, @
channels are created. 2 2o A .

The purpose of this paper, therefore, is to study the dywhere V°=(d/x%)+(9°/9z%), ko=wlc is the free-space
namics of such radiatively damped self-consistent waveguid@@ve numberg/dy=0, ¢ is the speed of light in a vacuum,
channels, in the field of incident wave beams that could p&nd the dielectric function of the whole interface structure is

quite wide. The theory will embrace cases which involve

X

) . ; ; e . , z<0
interfaces between media with widely differing properties, ) ‘1 5

and include an analysis of the stability of the steady states. e1(z,|E[*)= (|EP)=e,+ ﬂ 750 2
The existence of small overlap parameters conveniently pre- & €2 Eg ' '

sents the possibility of using another kind of perturbation
theory, as Suggested in an earlier pm Here the theory where 1Eg is the coefficient of nonlinearity andz is the
deals with phase-matched interaction between the radiatioinear part ofe(|E[%).

fields, and quasilocalized nonlinear modes. Although this ap- The fieldE can be split, formally, into two part§; and
proach may look somewhat like the perturbation theory deEz. i.e., E=E;+E,, where the separate parts satisfy the
veloped for certain soliton dynamics problettsee, for ex- equations

ample,[28-30), it differs from it, in an essential way, by 5 le 2 _

taking into account radiation effects, analyzed within the VB +e Ey= —[er—e(|E|D)JE2=F, (33
f_ramework qf the theory suggested earlier in this i.ntrodyc— V2E,+¢(|E|2)E,= —[e7— e ]E;=F,, (3b)
tion. It permits, in practice, the calculation of the trajectories

of the waveguide channels, the change in the energy flow im which the transformationx—kgx,z—kyz have been
them due to emission and pumping, and the determination ahade, and the linear part ef is " =¢,, if z<0, ande"=e¢,,
the structure of the radiated fields. The results obtained ernf z>0. Each part ofE is driven by the termsF, andF,,
able an interpretation of some effects that, up to now, arevhich are defined as
only capable of demonstration by extensive two-dimensional

2

(2D) numerical calculations. Fi=0, F,=— % E,, z>0, (4a)
C

Il. BASIC EQUATIONS AND PERTURBATION THEORY F,=0, Fi=—(e1—8&p)E,, z<0. (4b)

A planar interface between a linear and a nonlinear meThe interpretation of Eqg3) is as follows. The solutions of
dium is shown in Fig. 1. The nonlinear medium that occupieghe homogeneous equatiof#&, =0, F,=0) areE{” andEY,
the z>0 half-space is Kerr-like, with a dielectric permittivity respectively. Th&{ field aloneis a plane wave traveling in
that depends upon the intensity of the electromagnetic wavan entirely linear medium. It travels toward the interface in
field #. The dielectric functions are;=cons (linear me- the regionz<0 and totally internally reflects at the=0 in-

dium) (|E(w)|?) (nonlinear mediun) and the electric fields  terface between this region and z-0, nonlinear semi-
is infinite, half-spaceE ? has, therefore, only a small exponen-

tial tail reaching into thisz>0 half-space. TheE field
_ alonearises from a self-focused beam traveling in a nonlin-
&=3[E(w)e '“'+c.c], ear medium, parallel to the interface, and it, too, has only a
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weak exponential tail but, this time, stretching into the linear 12
z<0 lower half-space. From this information it can be appre- linear nonlinear
ciated that~, andF, can be treated as perturbations; i.e., in sl side side
the actual system, thmil of the self-focused wave, in<O,
perturbs EY to E;, and thetail of the incoming wave, re- |E9P |E9P
flected atz=0, perturbs E” to E,. Note that it is not nec- 4+
essary to require both half-spaces to be nonlinear in order to /\/\/\
apply this perturbative method. o ‘ AL ‘

The first task is to determine the homogeneous solutions -70 -35 0 35 70
EQ andEY. For this modelE{ is a plane wave incident z

upon thez=0 interface, at an angle greater than the critical . ' , oo
angle. ForF,=0, theE\® wave propagating toward the in-  FIG. 2. Unperturbed field amplitude structutes”|* and[ES?,
terface has a wave vectde=(k,,k,), where k,=v and in dimensionless units, for a single interface system.

k,=k, (scaled withkp). In thez>0 half space there is expo-
nential decay, andk,=vy, and k,=ik,. Hence beam. The superscrigd) is introduced to label this as a

=\e,1— 72, k,=\y?—¢,, and stationary state angllabels the solution as an induced wave-
guide channelsoliton. Up to now, only theindependent
C exp(— KkoZ—iyX), z>0 solutionsE{® andEY, shown in Fig. 2 to emphasize their
E(1°)= Ao expli po—iKiz—iyx), for F;=0, (5) c_haracte_r, have been derived and they are associated, respec-
+B explikiz—i yX) 7<0 tively, with x components of the wave vectors equahtand

v{®. The task now is to couple the radiation field and the
where it is convenient to use ral amplitudeA, for the localized beam. In order to achieve this, it will be assumed
incident plane wave, together witfi, (=cons} as a phase that the self-focused channgjuasisurface wayes localized
factor. This representation is convenient for the subsequertt a distancez, from the interface, where, exceeds the
analysis of channel dynamics in the nonlinear medium, ashannel width. This means that in the coupled nonstationary
will be made clear belowB, the complex amplitude of the regime |E,(z=0)|<|E,(z=2y)|, and that &(|E(z=0)|?)
reflected wave, is ~g,. The solutions of Eqs(3a) and (3b) areE,;#E {*) and
E,+E because thdriving terms K andF, are now taken
Agexpli o) ©) into account. For example, E(a) is inhomogeneous with a
0 o source term F localized in thez<0 half-space, and the so-
lutions to (38 and (3b) can be found by exploiting a weak
andC, the amplitude of electric field at the interfaze 0, is  overlap approximation. The incoming radiation field in the
. linear half-space creates a rapidly decaying field in the non-
co. 2i K, Agexei o). (7) linear medium, sd-, is very small in the region where the
k1t Ko soliton channel is heavily localized. Similarly, because the

- . beam is localized in a position at least one beam width away
A finite beam can be represented as an integral allethe 5 the surface, theail of its field in the linear half-space is

plane waves that make up the beam. If such a beam width ig¢ very weak. Hence it is emphasized, once againfhat
large enough to ensure that the drivin(g) term in(3a), is a perturbation term.
The E;” field is perturbed tdE,, and its structure is as
Ko >1, 0= 6> 6, follows. Florz>0, thgre will be thelcontribution given in Eq.
where 6 is the angle of incidence spread of the plane-wave(5) plus a perturbation varying as expk $z—iygx]. In the
bundle making up the bears, is the transverse dimension absence of the incoming plane wave field, in the linear half-
of the beamg is the angle of incidence to the normal, afid ~ space, the self-focused beam would have a wave number
is the critical angle for total internal reflection,d( Y% . butin the presence of this pump field it has a different
—sin Ne,/e,). Then A, should be replaced by slowly Wavenumbery. For_z<(0), E, has parts given by E¢S) plus
varying functionsA,(x) and ¢y(x). These are functions that radiation termexpli SSZ_'VSX]- caused by the beam and
characterize the amplitude distribution and the phase front gt beam tailterm explic £ (z—zo) —iyex]. Note thatF,=0,
the beam at the interface, and will be introduced below.  for z>0, andEQ)~2v2xPes -2~ 17¥E_ in the z<0 re-
The solutionE(ZO) of the homogeneous part of E@b) can  gion, so taking all the above points into account shows that
be easily found by setting,=0 and decoupling3b) from the fieldE; is
(3a) by settinge(|E|?) =¢(|E,|?). After these actions are
taken, Eq.(3b) has the standard solution Ceszzfiyx_,_QefK(zs)zfiysx,

iK1 — K>

B=|:
|K1+ Ko

z>0
(0) . _(0) V2kSVE, Ei=1{ Age' %o ixazminy Bz ivay Gkt z- i
Ey = woexp(—ivys 'X), o= COSf[K(ZSO)(Z— )] + Dek(zs)(zfzo)fiysx’ z<0,
9

for F,=0, (8
X ) where, at this stagey and y, are not functions of the propa-
where k50" ="~ ¢,, and y{¥) is the component of the gation distance. The substitution of solution&) into Eq.
wave number along the interface for molatedself-focused (33 yields the following relationships:
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D=-2v2«YE,,
_ (s) (S)_IK(l) — ¥z
Q—Z\/EKZ me 2 Ec: (10)
2
PP (o
—E D © c:
Also,
(8%_ .2 _ (2, 2 . —
K> vstep,=0, ki’ +vys—e,=0.

The stationary state,=E L) is given by Eq.(8) but when

0)y
F,#0, the following nonstationary state,= e~ 7 can
be used, where

\/_K<S)E
cosh k5 (2~ 29)]

Y=
><exp[—|j[yS yMdx—ia(z—z,){, (1)

in whicha, z,, %, andy, are to be determined. is a phase

change producing smallnoncollinearity of the channel axis

and the interface direction, ane® is different from « &%)

because it is theonstationaryalue. Equatior(11) |mmed|-
ately yields

f |y|2dz=4E2kY (12a
f Yzp* dz=4E2kz, (12b
f o —w— ;/'Z ¥|dz=8aky EZ (120
and Eq.(3b) becomes
. ap Py [|yl? 0
—ZI’YSSO)[?—X EZ ET K(zso) lﬁ:erW X, (13)
The differential of Eq.(123a), with respect to, is
de? f yr+ W (14)
TS a2 ) |ax VT ax

so the substitution ofly/dx and dy¢*/dx, from Eq. (13),
gives

dK(zs)
ax 8E2 8EZy0 J[Fz expli y0x) *
-F3 exﬂ—wS x)y]dz. (15

From Egs.(2), (4a), (9), and(11), for the regionz>0,
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3
Foe V(SO)X,//* —_— |:|2

C

efK(ZS)Z[Cefify dx+ Qefifysdle

X eifysdx+ia(z—zo)

K2 z+|a (z— zo)

[Ce"”+Q]|df|3
(16)

whered=[(ys—
be written as

v)dx. Hence, since is small, Eq.(15) can

¥s dys a2

e e T imce+qQl,
< ax g, Mol

17

wherex Pd«k = y.dy,, Im means take the imaginary part,
and

~JO | 3exp — k9 2)dz~ 4vZ kS exp( — kF20) EX,

(18)
The differential of Eq(12b), with respect t, is
1 dy dy*
d_X (K(ZS)ZO): Ez f & Zlﬂ* + lﬂZ dx dz (19)
Cc
This, through the use of E¢13), becomes
(K(S)Zo) 8E2 © f [Foexpli %) y*
—Fiexp —iy %) ¢z dz
i a [(ay* iy
525 | [,9— L
Y ap
—( 0z l/f—E g* | 1dz (20

The integrations

f[erxp(w@x)w —F3exp —iy”x)¢](z—25)dz=0,

| %

together with Eq(120), reduce Eq(20) to

dz=0,

a* 0
e

9 dZO+Z dK(ZS):Z dK(25)+a£
2 dx 0 dx 9 dx O
so that
dz, a
—-—= , (21
dx 'y(SO)

Equation(120) gives
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i (aK(S)): i f (7_1,0 P> o (921// aZw* 4
dx "2 7 8EZ ) [z ox axdz " 9xoz >3
¢o
aW* I ¢
- 9z 07_X dx. (22) + 1
S 4
The use of Eq(13), in Eq. (22) gives
& 5 10 15

d 1 diyl
&(aK(zs>)=8E27(0) sz dz exp(i yV'x)
c/s

xexp{if (ys— yO)dx+ia(z—zg) |dz
ia

+ —— | F, expiyOx)y*dz+c.c.,
8E§7(50)j 2 eXp(iys X)

(23

where c.c. denotes the complex conjugate.
The first term in Eq(23) is

d
f Fz%exp(iy(so)x)exp{if (ys— yO)dx+ia(z—zp)

Z,

FIG. 3. The effective potential . as a function of beam posi-
tion z,, for different values ofys. (1) ys> y%: attractive potential.
(2) and(3) ys< y%: repulsive potentials, wherg, for (2) is larger
than for(3).

IIl. DYNAMICS OF SELF-CONSISTENT WAVEGUIDE
CHANNELS: ZERO PUMP WAVE

In this section, the free motion of self-consisténelf-
focused waveguide channels is investigated. The free mo-
tion occurs when the pump field is absent i&,=0. This
means thaB=C=0, and Eqs(17) and(25) simply become

3 3 3
02 @20 _ 417 (k5 ) (s)
ql . '}/S d 2 —_§ — eXF{_ZKZ Zo}
=-S5 [Ce*+Ql, (24 X (£1-2)
EC
_ IV o 204
and the second term, plus its complex conjugate, is simply 9z (
a(dx $/dx). Equation(23), after using Eq(21), therefore
reduces to whereV; is an effective potential, and
d?z —q . (s) (s)°
02 =20 RgCed+ 25 0, 9Ys_ _gKi K2 (s
s G T agt N QJ. (25 W g =8 o el - 2z} (29b
where It is interesting that at< =« (% there is a change from

= o dlY]
o~ fo 9|2 5, exH—«5)2)dz

~4v2 K exp — k) 20) EZ. (26)

attraction to repulsion between the beam and the interface.
The right-hand part of Eq29b) is always negative, and this
corresponds to the fact that is decreasing, which shows
that there is a decrease of energy flow in the channel. The
only possible physical process that provides such an outflow
of energy isemissioninto the linear medium. In fact, Eq.

In summary, this section contains equations that govern thé&29g describes the dynamics of an equivalent quasiparticle,
dynamics of a self-consistent waveguide near an interfacéncorporating a radiation reaction, moving in the field of a
The analysis permits the determination of channel trajectotime-dependent potentiégee the right-hand partwhich de-
ries and takes into account the changes of the energy flow itermines the character of the interaction with the interface.

them, resulting from radiative losses and pumping. Thesome forms of the effective potentialy;=—2(x$ [«
structure of the output field is given by E@®). O N —2:89,7 for diff t val f

The rate of change of the energy fldy in a self-focused "1 h]) (5 F‘°’_2)e3Xp|:f( 52 ZO(]S) or drferent values olys
channel with propagation distangeis equal to the outflow &€ S towntl_n Igf- e oh >K1| ’ (t)rr] ¥ﬁ>.5§81f+82)._ 7tt5 i
of energy radiated into the linear half-space. The energy flov?qe interaction of the channel wi € intertace Is aftractive
normal refractioh In the opposite case, when

in a channel is .
k <k (y2<y*?), repulsion occur§anomalous refrac-
tion). Hence only channels with large enough energy flow

P.= ySJ |z//|2dz=4ys( yﬁ—sz)l’zEg, (27 are attracted to the interface. This energy determines the
o emission angle of the output radiation into the linear me-
dium. In the attractive case, the angle of emission lies in the
and

band,

dPg AE2 dys o 1 12

—— = . {27a—e2}, (28) —>¢>0*=sin Y| |1+ 2

dx 0 yEe, dn 1 2SS (PR
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In the repulsive regime, the angle of emission is determined
by the inequality

60

6*>0>6,. 4
Taking into account the fact that the propagation of radiation
in the near-surface channel is accompanied by losses, the
character of the interaction will change when the energy flow

falls below a critical value. The initial conditionghannel
position, angle of inclination to the interface, and energy
define the power and value of the emitted energy.

In order to analyze Eqg29) more easily, consider the

case when the media have linear dielectric permittivities that

are quite close to each other, i.e;;—&,<eq,g,. In this re-

gime, strong simplifications become possible. After introduc-

ing the variablen=x/y?, Egs.(20) transform to

d220 4 K(zs) ( 2s) _K(ls)z)
GF- T3 A P2z (303
2
o 9o (5"
d,r] _T As eXp{ 2K Zo} (30b)

whereAe=¢;—¢,. It is immediately apparent that E¢B03

0.5 1 L5

10°7
(b)

oo

2

10°N
(a)

FIG. 4. Motion of the channelgself-consistent waveguides
near the interface between a lineg;=2.674 and a nonlinear
(e0=2.647 medium. The initial energy is high
(up=2.666>uf ~2.6602), and there is no incident pump wave.
The input coordinate iZy=20, and the critical angle is 81.85°.
(8 Channel trajectoriesb) Energy flow P; normalized with the
energyPy at »=0, along the channel trajectories. The data @je
(dzy/d7)o=—0.02,(2) (dzy/d7)y=0, and(3) (dzy/d7)y=0.02.

channel waveguides, an®) the changes in the energy,
PJ/Py, as a function ofy, along these trajectories. Some

can be integrated once, and the pair of equations can then %emmen results are displayed in Fig. 4 for a single interface

put in the form

d 1
o [NT
dy
2e1—e,—U—2A —-u
+VAe log f1 2 T o(e1 )+const,
€2

q 5 (31
u 1

dy- 2e " £2)¥(e1—u)Y2 exp( — 225\ u—e,),

whereu=y2. The constant of integration is determined by
Ug, theinitial value ofu, and dzy/d7),, theinitial value of
the derivativedzy/d ». Hence

d

£ 12[ Vei—u—+e;—Ug)+VAe log
(281 —£,—U=2Ae(e1—U))(Ug— sﬁ]
(281 o~ Ug— 2\/A8(81 Ug ) u 82)

(5] s
dn
0
g—;=—Al—6(u £2)(&1—u)Y%exp(— 2zo\VU—¢,),

(32b

whereu lies in the range,<u<e,. Equationg32) permit a

involving media in which the critical angle for total internal
reflection is9,~81.85°. If a soliton channel propagates to-
ward the interface and is eventually pushed out completely
into the linear medium, a special treatment is needed. When
the channel center is nearer to the interface than the trans-
verse extent of its localized field, the interaction with the
interface is not weak, and perturbation theory of this kind
cannot be applied. This fact has been taken into account in
the calculations reported here, and the typical initial distance
of the beam center from the interface has been set equal to,
or beyond 1(2«), i.e., well beyond the skin depth. Figure
4@ is a plot of the gwde centeg,, starting fromx=0. For
Ug=2.67,uf = y5“=2.6602, it is the trajectories of channels
which are orlglnally located in the nonlinear medium at
Z,=20 that are shown in Fig.(d) for different initial angle
values (z,/d7),. Trajectories 1 and 2 show that the soli-
tons are attracted to the interface to begin with, but are re-
pulsed at larger values afafter losing a part of their energy.
Trajectory 3 takes off immediately into the nonlinear me-
dium. In the latter case, the energy losses are small, so any
attraction does not change the sign of the effective potential.
The parts of the trajectories far from the interface suffer very
little radiative loss and, therefore, experience almost no in-
teraction with the interface. In more detail, for trajectories 1
and 2 there is an initial fall ifP4 followed by a penetration

of the channel into the nonlinear medium. When this hap-
pensP, eventually settles down to a constant value. Channel
3 takes off into the nonlinear medium, emitting very little
radiation, and, for this cas@, remains almost constant. Fig-
ure 5 shows a beam propagation simulation corresponding to

gualitative investigation, beginning with the observation thatcurves 1 of Fig. 4. Figure (8 shows, quite dramatically,
Eq. (32b) describes the radiative emission of energy from thehow a nonlinear self-focused beam sets off by being attracted
channel and is expressed by the monotonic decrease of the the interface. As this happens, energy is radiated into the

parameteu.

linear medium. This corresponds to the fallzg associated

Detailed computer investigations have been carried out ofvith a sharp drop irP¢/P,, shown in Fig. 4. Figure (®) is

(1) the trajectorieqzy,7) of the center of the self-focused

the surface plot, of which Fig.(8) is a cross section.
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FIG. 6. Spatial dynamics of the self-consistent channels inside a
layer of nonlinear material. The thickness of the layer is equal to 30
(d=15). The initial energy corresponds to a valug=2.666. The
) oy n l\ ) data are(1) (dzy/d7)y=0.000, (2) (dzy/d7)y=0.0002, and(3)
linear ':”;Wul' ||':II|,]I'||‘I noniinear (dzy/d7),=0.0004. (a) Channel trajectories(b) Normalized en-
916 (‘)" — 16 ergy flow in the self-focusedR;) channels.

between the interfaces. Equatio(8)), taking into account
both interfaces, become

73 ao (8 kT sin2x zo)expt — 21 ),
(333

d7s < K () ()

e - s S _ s

a7 16 v As cosi{2«57zp)exp —2«57d).
(33b

16 The presence of a second boundary in the nonlinear medium
leads to the possibility of the layer capturing a self-focused
hannel. This can occur for the case of repulsing interfaces,
whenu<ug . The direct trajectory right along the middle of
the layer is also a possibility. This type of solution is un-
stable, however, ifi>ug . Just as in the case of the single
_ ) ) . interface, the nature of the interaction with the interfaces of
Calculations of the motion of self-consistent waveguidey,q layer changes during the energy loss process, and it is
channels, near the interface, can be used to explain the giafiis that can trap channels in the nonlinear waveguide. Un-
nonlinear Goos-Hachen effect suffered by wave beams in ¢ nately, Eqs(33) cannot be reduced as easily as was the
reflection. The self-focused channels, excited during the filag5e for Eqs(30). This means that equations lik&l) cannot
mentation of the beams in the vicinity of the interface pg gptained here. Neverthelegd?z,<x1 for channels near

[10,13, become attracted to it and provide energy transfefno middie of layer so, for them, EqE83) simplify to
along the interface. This is followed by local emission into

the linear medium, and it is this phenomenon that can lead to d%z, 16 . ) ,
a giant shift of the center of gravity of reflected beams, with 97" 355 kS (k"= k¥ zgexp — 265d),
respect to incident ones. Y &

FIG. 5. Beam propagation simulation for parameters associate
with curve 1 of Fig. 4. The dotted line shows the interface position.
(a) Contour plot of the intensity distributioiib) Plot of the intensity
as a function ok andz.

(343

5
IV. DYNAMICS OF SELF-CONSISTENT WAVEGUIDE du - <R 29 .
CHANNELS INSIDE A NONLINEAR LAYER dy A XA~ 2xk37d), (34b

Consider now a planar nonlinear layer of thicknesk 2 . 2 , Lo
lying in the region—d<z<d, that is embedded in an infinite Whereu, as before, is equal tg5. The first equation iri34),

linear medium. Let the nonlinear permittivity lmé|E|2), as- yvhenu<u3 , describes_ an oscillator that has a slowly vary-
sume that its thickness exceeds the transverse dimension @ (@long 7) local spatial, frequency), where

any self-consistent channel that could be formed i.e., 16
2d>1/«x$; and, finally, let the linear permittivity be,. 2 (9)4 (92, (92 A
Radiative energy losses are now possible through both” — 3As 2 (mlea™ ()= x” () ]exd = 24" ()d].
boundaries of the layer, and this can lead to an interaction (35



5416 ALIEV, BOARDMAN, SMIRNOV, XIE, AND ZHAROV 53

172 radiation emitted by the nonlinear film is weak and spread
linear nonlinear linear over allx, so it does not show up in this graphical plot.

V. STABILITY OF HOMOGENEOUS STEADY

STATES
X IN THE FIELD OF PLANE WAVE
T—. z The influence of the incident pump field on the dynamics

of self-focused channels will now be addressed. First, the
spatial stability(alongx) of stationary, self-consistent chan-
nels in the field of plane electromagnetic waves will be con-
sidered. The steady state in this case is a direct channel,
which is parallel to the interfade?]. In this formulation such

a solution can be obtained from Edq4.7) and (25), if the
left-hand sides are set equal to zero. This takes into account
the fact that, in the stationary regime, the wave numbers of
the incident field and the self-consistent waveguide are equal
to each other, i.e.y=v,, and

16

172 K1 Ao(— K2SiNg o+ K1CO0SHg) + V2 ko( K%- Ki)

X exp(— k2Zp)Ec=0,
(36)
Ao( chOS(bo-f— Klsin¢o) - 2\/2 K%eXF( - KzZo) EC: 0.

Note that, sincey= 1y, x need not now be distinguished from
<. Solving Eq.(36) for the equilibrium phase shif, and
the amplitude of incident wavA,, as a function of the equi-
librium channel axis positioa,, gives

tan( ¢o) = k2 /K1,
(37)
FIG. 7. Beam propagation simulation for parameters associated Ao=V2(1+ k5 k3) kpexp( — k2Z0)E
with curve 1 of Fig. 6. The dotted lines show the layer boundary
conditions.(a@) Contour plot of the intensity distributiorib) Plot of

, : : Within the framework of these approximations, the expres-
the intensity as a function of andz.

sions given by(37) coincide with the exact solution of the
. , I , roblem[2,10].
Q) is the spatial oscillation frequency of the channel axis neaP Stability, with respect to perturbations of the stationary

the middle of the layer, with thepdependent functions channel position, energy flow, and phase shift can now be
x{%(7) determined by the second equation, which, inciden- P : 9y : P

tally, does not contain valug,, 7 clearly defines the propa- anglyzed. First, Eqs(l?)_ and (25) are Ilneanz_ed o t_he

d . . neighborhood of the stationary solution and this step is fol-
gation length of self-focused waveguides in the layer, befor?owed by leting z.—z.+ 57 04 5y and
total emission occurs. Figurg@® contains numerical calcu- y 9 Z=2 DRATEA: 4

lation of typical trajectories inside the layer. All the channels=gg+jﬁbm:§:/2f§és§g} ?ﬁg fr?a?:]eelsn;zliltigﬁrt\ljvr:\?:?\r&;?er
displace toward one or another of the interfaces, but one otp 9 ; P N
nd phase, respectively. If these perturbations are propor-

the main results is an oscillation of the channel axis around

. ; ..~ Tional to eP”, then a set of linear characteristic equations,

itzepmﬁgrl% (g;gﬁ tlgj/:gtc;;eareengggglgysg?r?%igs)é Va”auonaefining the dynamics of the channel near the steady state,

s - 3 pan be obtained. Note that, if any part of the system experi-

The curves in Fig. 6 show that the self-focused channeences growth, it is unstable. In the limit @, the char-

axis oscillates around the center of the layer. As the self- s L : 2
focused beam moves away from the centereither direc- acteristic equation is reduced to
tion, is obvious that an interface is encountered, which then 0) 2, 4 4 _
repulses the beam. As each repulsion builds up, the self- [(ys P)"+ 3 K28Xp( —2K220) ]
focused channel loses energy by radiation. This explains why (0),\2__ 5.4 o Ty
PJ/P, declines, quite rapidly, ag increases. Figure 7 shows X((757P)"— 4Kz8Xp( ~2122))=0. (39)

a numerical simulation of the beam behavior inside the non-o ¢ Eq(39) d ibes the i bil ith
linear layer. Figure @ is a contour plot of the intensity ©ONe root of Eq(38) describes the instability with respect to

distribution, and shows the beam veering to the left or thé:)erturbations irenergy and phasthat grow with the incre-

right. Only intensities above a sensibly, yet arbitrarily, cho-ment
sen low threshold are shown. This explains whyP, drops ) —
rapidly in Fig. 6b) as the beam appears to fade out. The I'e=2x5exp( — k220), (39
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4
16K;'y(30) eXF( - 4K220)
= 2 2 ’
K13y = k5 (Y + k3)

4
161597 exp( — 4k,20)

=- 7 7 -
3y = k) (k3+ ¥

Equation(43), being a quartic equation, has four solutions,

which are equal to the four solutions of the following pair of
FIG. 8. Spatial channel dynamics, near the steady state, in thquadratic equations:

field of an incident plane wav@) ;> x, and y®’=2.65. (b) One

example of the general casé?’=2.67. The horizontal linegz,, ) X
PJ/Py=cons} in both figures correspond to the steady states. Ini- X +(b+y8y+b“—4c) §+
tially, zo=2zy=15.

by—d
y ):o,

+ e —
Y 8y +Db?—4c
(443

The other root of Eq(38) describes small oscillations of the
channelaxis, around the equilibrium position, that have a 2+ (b— 8By + b2—4c) g+(y_ by—d )=O,

wave number V8y+Db?—4c
(44b)

2 —
Ke=— k3exp— k2Zo). (40 Herey is any one of theeal solutions of the following cubic
V3 equation:

Once again, it is important to remember that, even if only 8y3—4cy?+ (2bd—8e)y+e(4c—b?) —d?=0.

one root of the characteristic equation implies growth, then

the whole system is unstable. For £,=2.674 ands,=2.647, a plot of the four solutions of
For the other limiting cases;=0, the characteristic equa- Eq. (43), versu5y§°)2, is displayed in Fig. 9. This figure

tion gives emphasizes further that, even in the general case, instability
Omr2_ 4 4 _ ensues because of the appearance of real parts in the roots,
(75" P)"= — 3K28XP — 2K2Zp), (4D je. the general case has not changed the conclusion drawn

from Eq.(38). Curvesb, shown in Fig. 8, give the growth of

Only this case is stable, but it is not very important becauséhe channel axig, and the oscillation of the channel power

it corres_ponds to only one po!nt. In fact,_evenm’lf~0 the P./P, for 7(50)2:2_67_ The runaway growth @ means that
system is still unstable. EquatidAl) describesenergy and the self-focused channel moves rapidly away from its initial

channel axiscillations near a steady state, that have awavf)osition and does not, on average, capture any more energy

number The results just given concerning the stability of self-
consistent waveguide channels confirm the conclusions ob-
2 — tained in the recent paper by Aliei al.[10] that were based
L2
K= 3 K2€XP( — K2Zo)- 42 4pon energy considerations.

Using Eqgs.(17) and (25), the power PJ/P,) and the beam VI. DYNAMICS OF SELF-SUSTAINING

center(zo,) shown as curva in Fig. 8 demonstrate the rapid WAVEGUIDE CHANNELS IN THE FIELD

growth in channel energy governed by the increment in Eq. OF WIDE INCIDENT BEAMS

(30), and the channel axis oscillation governed by the wave
number in Eq(40). The energy is gained, of course, from the
pump wave. In the general case, the characteristic equation

The results of a numerical study of the dynamics of self-
focused waveguide channels that exist in the field of incident
Wide beamswill now be presented. The method is based,
once again, upon Eq§l7) and(25), together with the addi-

(Y2'p)*+b(yp)3+ (v p)? +d(v'p) +e=0, 3 tional phase shift equation
dé
where x-S (45
2
720) KS expl — 2k,Zg) K% The amplitude distribution of the beam field, at the interface,
=— (0)2 > 2 2 8K1K220—12K1_4— s is
(vs  +r3)(kit+K5) K1

(x—b)z)z
Am( 1- ———|, 0<x<2b
, Agx)=1 ° b

2 2
8y (15— kD (78— Kk5)expl — 2kp20)
- 2 2
(k5+ kD) (Y + kD (39 = k) 0, x<0, x>2b,

(46)
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0.004 0.0004, 0.0016,
0 0 0
0.004 -0.0004 -0.0016
0.008 -0.0008 0.0032

0.012 -
2647 2656 2665 2674

-0.0012 5 ' '
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0.0048 - -
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FIG. 9. Solutions(ordinateg of Eq. (43) vs

yo? y©? y©? y9” (abscissakfor s,=2.674 ands,—2.647.(a),
s (b), (c), and(d) show the real parts of the solu-
(b) (d) H tions, because the imaginary parts of the first two
0.0036 0.0004, 0.0048 solutions are zerdge) and(f) show the imaginary
parts of the remaining two roots.
0.0024 0 0.0032
-0.0004
0.0012 0.0016
-0.0008
-0.0012

2647 2656 2665 2674

2
(0)
s

2.647 2656 2665 2.674

2
[V}
s

0
2.647 2656 2.665 2.674

2
(0)
’YS

where A is the maximum value of the field of incident samez, determines th@lane wave amplitude_oﬂthat would
beam andb is the half-width of an illuminated spot at the be needed to maintain i, has been calculated, therefore,
interface. The phase front of the incident beam is assumed tand used to normalizA{', as stated in the caption. It can be

be a plane. Alsojy, will be allowed to have values greater seen that channel trajectories can go deep into the nonlinear
than ¢; which permits a change in the nonlinear mode frommedium, which occurs either with the loss of some part of
radiative to nonradiative. This can be caused by energghe total energy, with some increase, or with total emission.
transfer from the pump wave to the channel. In order toThis is caused by phase relations between the incident field
satisfy the radiation conditions, when the sign of the expresand the field of the self-consistent waveguide. These rela-
sion under the square root k¥ changes in Eqs(17) and  tions change, generally, along the track of the propagation.
(25), the substitutionxgs)eixls) is performed. This pro- Depending upon the value of this phase shift, the external
vides the exponential decrease of the correction to the fielleld can accomplish either a positive work contribution to
EQ, wherez—o. the channel field, which leads to the partial compensation of
Some numerical results of calculations are presented iits radiative losses, or negative work, leading to an increase
Fig. 10, in which the valud, in dimensionless units, has of the radiative losses.
been set equal to 400. In Fig. (HD trajectories of the self- The well-known possibility{4,13] that a giant nonlinear
consistent waveguide channels, with an initial valueGoos-Hachen shift of the intensity maximum of the re-
uy=2.655, and an initial positior,=15, (dz,/d#n),=0, are flected signal, through a value much greater than the incident
shown. In the course of the calculatian, must be selected beam width, is strikingly shown in Fig. 11. A Goos-htzhen
and, from a previous section on plane wave pumping, thishift means that if a beam is incident on a dielectric surface
then the center of the reflected beam does not appear to come
from the point of impact of the center of the incoming beam.

60 12 Nonlinearity exaggerates this effect, leading to the so-called
3
_08f :
& 2 0.08
™ o4 1 0.06f
A_ 0.04r
0 0 r
0 05 1 15 2 0 05 1 15 2
0.02}
10°N 10°M
0 : 0 .
(a) (b) 0 05 1 15 2 0 05 1 15 2
10°" 10°7

FIG. 10. Spatial channel dynamics and normalized energy flow
along the trajectories in the field of an incident wave b¢aee Eq.
(35)], for half-width b=400; 17=2.655,z,=15; and @z,/d7),=0,
$o=0.57 (initial phase shift (1) A§/A;=k=0.0.(2) k=1.2. (3)
k=1.6.

FIG. 11. The demonstration of the development of a giant non-
linear Goos-Hachen effectb=400. y*=2.655. ¢y=¢. (1) k=0.0,
(2) k=0.6. (3) k=1.2. A, is the reflected amplitude angl, is the
phase change.
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gianteffect. In Fig. 11 curve 1 is a clear cut case, in so far asaccounted for. By means of this theory, an investigation of a
the peak of A,|? (reflected intensityoccurs aty#0. Curves  number of effects is shown to be possible. These include the
2 and 3 are more dramatic, and the shift can be measuradteraction of self-consistent channels with an interface and
from =0 to some average positiag=0, where the bulk of an incident wide electromagnetic beam. The approach given
the reflected energy appears to be coming from. Its explanas instructive because the mathematical theory permits an
tion lies in the resonant interaction of the beam field with theinterpretation, and an understanding, from a physical point of
excited self-focused channel in the nonlinear medium in theview, of certain interesting phenomena. It is clear that non-
near-surface region. Such interaction of self-consistenperturbative regimes will still need numerical analysis, but
waveguides with electromagnetic beams can be used for thtbe numericalconclusions reported by Tomlinset al. [13],
control of the channel field structure, and their behavior, inare, nevertheless, generated by the analysis reported here. It

the nonlinear medium, by the radiation fields. is believed that the approach here will be very helpful in the
study of the stability of nontrivial nonlinear structures, and
VIl. CONCLUSION that it will lead to a large number of applications in more

. _ . than one discipline.
In conclusion, a perturbation theory is presented that de-

scrl_be_s, quantitatively, the interaction of wave fleld_s with ACKNOWLEDGMENTS

radiatively damped self-focused channels near the interface
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