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The present paper is devoted to an investigation of the influence ofradiative lossesupon the spatial
dynamics ofself-consistentwaveguide channels that are localized near interfaces between linear and Kerr-type
nonlinear dielectric media. It is shown that the radiative effects, through their dependence on the intensity of
the electromagnetic fields, the initial channel position, and its angle of inclination to an interface, can lead
either to the total disappearance of a nonlinear channel formation, or to its displacement, deep into the
nonlinear medium, as a consequence of the loss of some part of the initial energy. The nonlinear interaction of
self-consistent channels with externally incident, stimulating, beams is studied, and stability of the resulting
steady states is determined. In order to carry out these investigations, an original approach is used that is based
on the assumption of a small overlap between externally incident waves and the internal, nonlinear, quasilo-
calized eigenmode. It is shown that this method permits equations to be obtained that determine the spatial
dynamics of channel energy, and position, together with the structure of the scattered field.@S1063-
651X~96!09305-1#

PACS number~s!: 42.25.Gy

I. INTRODUCTION

The interaction of strong electromagnetic fields with
nonlinear/nonlinear or linear/nonlinear interfaces, generated
with dielectric media, is an important area of modern optics.
One of the most interesting aspects of such problems is the
penetration of radiation into a nonlinear medium with subse-
quent self-focusing properties, when wave packets are inci-
dent upon a linear/nonlinear interface, at an angle greater
than is necessary for total internal reflection. Within the
framework of an elegant stationary state theory, using plane
waves, Kaplan@1–6# predicted the appearance of optical bi-
stability in the reflectivity, and stimulated transparency.
These papers led to activity which is still vigorous today.
Bistable effects were soon observed@7#, and the transparency
threshold of a nonlinear medium was measured. Indeed, an
even earlier prediction@8# that the stationary, spatially ho-
mogeneous, transparency regime of a self-focusing medium
is unstable is now accepted as well known. It follows from
this property that, when certain power thresholds are ex-
ceeded, by increasing the amplitude of a wave incident upon
an interface between linear and nonlinear media, a dynamic,
or inhomogeneous, superthreshold regime will occur. In fact,
the first two-dimensional numerical calculations of the re-
flection of a plane wave in this superthreshold regime@9#
showed that an electromagnetic field penetrates into the non-
linear medium in the form of self-sustaining channels~fila-
ments!. These channels form a periodic grating, whose pe-
riod depends upon how much the incident wave amplitude
exceeds the threshold value. The reflected field, on the other
hand, assumes the form ofelectromagnetic jets. Very recent
theoretical investigations show@10# that transparency can
also occur together with the periodic generation of solitons,
which run deep into the nonlinear medium, or are accompa-

nied by a more complicated, spatially inhomogeneous, dy-
namic regime. In this context, it is interesting that numerical
calculations of stationary scattering of wave beams by non-
linear interfaces@9–14# reveal the presence of filamentation
of transmitted radiation that look rather like the plane wave
case, at higher thresholds. For this case, the number of fila-
ments depends upon the superthreshold value of the incident
radiation. The possibility of a giant, nonlinear, shift of the
center of gravity of the reflected beam can also be demon-
strated@9–14#. This giant shift, in contrast to the well-known
linear Goos-Ha¨nchen effect@15,16#, can be much greater
than the incident beam width. In some papers@14,17#, such a
giant nonlinear Goos-Ha¨nchen effect is associated with the
excitation of the unstable branch of a nonlinear surface wave
@18–22#, but, in the paper by Alievet al. @10#, the giant
Goos-Hänchen effect is explained in terms of the excitation
of a near-surface, nonlinear, weakly radiative, self-consistent
channel ~nonlinear quasilocalized mode! that provides an
electromagnetic energy transfer along the interface. Also, the
trajectories of the excited self-consistent channels are very
sensitive@10# to any changes in the parameters of the inci-
dent radiation, such as amplitude, angle of incidence and
beam width variation.

It is clear, then, that the scattering of wave beams, which
are incident upon the interface between a linear and a non-
linear medium, at angles of incidence greater than the critical
one for total internal reflection, is determined by the nature
of the interaction between self-consistent waveguides excited
into nonlinear medium and any pump wave. The scattering is
also determined by energy emission from them, through the
interface. It is important to note, however, that self-
consistent channels have a width that is of the order of the
dimension of the skin layer, and that it is weakly coupled to
the pump wave. It is necessary, therefore, to investigate the
spatial dynamics of nonlinear self-focused waveguides that
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have small radiation losses in the presence of a pump wave,
as well as in the free-emission regime. In this connection, as
far as analytical results currently available in the literature
@23,25# are concerned, it appears that they deal with the so-
lution of very specific problems. In particular, they involve
the interaction~reflection and transmission! of self-consistent
channels with the interface between two nonlinear Kerr-like
media which have very similar physical properties, and are
close enough to each other for an equivalent particle method
to be used. The interface in such theories@23–26# is consid-
ered to be a small perturbation to the nonlinear Schro¨dinger
equation, and the transverse structure of the channels is as-
sumed to be invariant. In spite of the fact that this interesting
theoretical approach@23–26# does predict a number of im-
portant effects, it has to be admitted that it cannot be applied
to problems involving wide wave packet scattering by non-
linear interfaces, because of the nonradiative character of the
channel, or to an interface between media with widely dif-
fering nonlinear properties. Recent theory, based upon an
energy transfer equation@10#, does account for such strongly
differing properties, by dealing with a linear/nonlinear inter-
face, and the generation of filaments and soliton formation in
the vicinity of the skin layer. However, it does not include
any interaction of the channels with the pump wave, after the
channels are created.

The purpose of this paper, therefore, is to study the dy-
namics of such radiatively damped self-consistent waveguide
channels, in the field of incident wave beams that could be
quite wide. The theory will embrace cases which involve
interfaces between media with widely differing properties,
and include an analysis of the stability of the steady states.
The existence of small overlap parameters conveniently pre-
sents the possibility of using another kind of perturbation
theory, as suggested in an earlier paper@27#. Here the theory
deals with phase-matched interaction between the radiation
fields, and quasilocalized nonlinear modes. Although this ap-
proach may look somewhat like the perturbation theory de-
veloped for certain soliton dynamics problems~see, for ex-
ample,@28–30#!, it differs from it, in an essential way, by
taking into account radiation effects, analyzed within the
framework of the theory suggested earlier in this introduc-
tion. It permits, in practice, the calculation of the trajectories
of the waveguide channels, the change in the energy flow in
them due to emission and pumping, and the determination of
the structure of the radiated fields. The results obtained en-
able an interpretation of some effects that, up to now, are
only capable of demonstration by extensive two-dimensional
~2D! numerical calculations.

II. BASIC EQUATIONS AND PERTURBATION THEORY

A planar interface between a linear and a nonlinear me-
dium is shown in Fig. 1. The nonlinear medium that occupies
thez.0 half-space is Kerr-like, with a dielectric permittivity
that depends upon the intensity of the electromagnetic wave
field E . The dielectric functions are«15cons ~linear me-
dium! «~uE~v!u2… ~nonlinear medium!, and the electric fieldE
is

E5 1
2 @E~v!e2 ivt1c.c.#,

wherev is the angular frequency,E~v![E is the Fourier
amplitude of the electric field, and c.c. denotes the complex
conjugate. Only a nonlinear medium with self-focusing prop-
erties is going to be considered here, so that

]«

]uEu2
.0,

In order to be specific, it is assumed that«1.«25«~uEu250!,
and that the wave fields ares polarized, i.e.,E5Eŷ, whereŷ
is a unit vector along they direction. The basic wave equa-
tion is now

¹2E1k0
2«T~z,uEu2!E50, ~1!

where ¹25(]2/]x2)1(]2/]z2), k05v/c is the free-space
wave number,]/]y50, c is the speed of light in a vacuum,
and the dielectric function of the whole interface structure is

«T~z,uEu2!5H «1 , z,0

«~ uEu2!5«21
uEu2

Ec
2 , z.0,

~2!

where 1/E c
2 is the coefficient of nonlinearity and«2 is the

linear part of«~uEu2!.
The fieldE can be split, formally, into two partsE1 and

E2, i.e., E5E11E2 , where the separate parts satisfy the
equations

¹2E11«LE152@«T2«~ uEu2!#E2[F1 , ~3a!

¹2E21«~ uEu2!E252@«T2«L#E1[F2 , ~3b!

in which the transformationsx→k0x,z→k0z have been
made, and the linear part of«T is «L5«1, if z,0, and«L5«2,
if z.0. Each part ofE is driven by the termsF1 and F2,
which are defined as

F150, F252
uEu2

Ec
2 E1 , z.0, ~4a!

F250, F152~«12«2!E2 , z,0. ~4b!

The interpretation of Eqs.~3! is as follows. The solutions of
the homogeneous equations~F150, F250! areE1

~0! andE2
~0! ,

respectively. TheE1
~0! field aloneis a plane wave traveling in

an entirely linear medium. It travels toward the interface in
the regionz,0 and totally internally reflects at thez50 in-
terface between this region and az.0, nonlinear semi-
infinite, half-space.E1

~0! has, therefore, only a small exponen-
tial tail reaching into thisz.0 half-space. TheE2

~0! field
alonearises from a self-focused beam traveling in a nonlin-
ear medium, parallel to the interface, and it, too, has only a

FIG. 1. The linear/nonlinear interface.
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weak exponential tail but, this time, stretching into the linear
z,0 lower half-space. From this information it can be appre-
ciated thatF2 andF1 can be treated as perturbations; i.e., in
the actual system, thetail of the self-focused wave, inz,0,
perturbs E1

~0! to E1, and thetail of the incoming wave, re-
flected atz50, perturbs E2

~0! to E2. Note that it is not nec-
essary to require both half-spaces to be nonlinear in order to
apply this perturbative method.

The first task is to determine the homogeneous solutions
E1

~0! andE2
~0! . For this model,E1

~0! is a plane wave incident
upon thez50 interface, at an angle greater than the critical
angle. ForF150, theE1

~0! wave propagating toward the in-
terface has a wave vectork5(kx ,kz), where kx5g and
kz5k1 ~scaled withk0!. In thez.0 half space there is expo-
nential decay, and kx5g, and kz5 ik2 . Hence k1

5A«12g2, k25Ag22«2, and

E1
~0!5H C exp~2k2z2 igx!,

A0 exp~ if02 ik1z2 igx!

1B exp~ ik1z2 igx!
,

z.0

z,0
for F150, ~5!

where it is convenient to use areal amplitudeA0 for the
incident plane wave, together withf0 ~5const! as a phase
factor. This representation is convenient for the subsequent
analysis of channel dynamics in the nonlinear medium, as
will be made clear below.B, the complex amplitude of the
reflected wave, is

B5S ik12k2

ik11k2
DA0exp~ if0!, ~6!

andC, the amplitude of electric field at the interfacez50, is

C5
2ik1

ik11k2
A0exp~ if0!. ~7!

A finite beam can be represented as an integral overall the
plane waves that make up the beam. If such a beam width is
large enough to ensure that

k0a'@1, u2uc@du,

wheredu is the angle of incidence spread of the plane-wave
bundle making up the beam,a' is the transverse dimension
of the beam,u is the angle of incidence to the normal, anduc
is the critical angle for total internal reflection, (uc
5sin21A«2 /«1). Then A0 should be replaced by slowly
varying functionsA0(x) andf0(x). These are functions that
characterize the amplitude distribution and the phase front of
the beam at the interface, and will be introduced below.

The solutionE2
~0! of the homogeneous part of Eq.~3b! can

be easily found by settingF250 and decoupling~3b! from
~3a! by setting«(uEu2)5«(uE2u

2). After these actions are
taken, Eq.~3b! has the standard solution

E2
~0!5c0exp~2 igs

~0!x!, c05
&k2

~s0!Ec

cosh@k2
~s0!~z2z0!#

for F250, ~8!

wherek2
(s0)25gs

(0)22«2, andg s
(0) is the component of the

wave number along the interface for anisolatedself-focused

beam. The superscript~0! is introduced to label this as a
stationary state ands labels the solution as an induced wave-
guide channel~soliton!. Up to now, only theindependent
solutionsE1

~0! andE2
~0! , shown in Fig. 2 to emphasize their

character, have been derived and they are associated, respec-
tively, with x components of the wave vectors equal tog and
g s
(0) . The task now is to couple the radiation field and the

localized beam. In order to achieve this, it will be assumed
that the self-focused channel~quasisurface wave! is localized
at a distancez0 from the interface, wherez0 exceeds the
channel width. This means that in the coupled nonstationary
regime uE2(z50)u!uE2(z5z0)u, and that «„uE(z50)u2…
'«2. The solutions of Eqs.~3a! and ~3b! areE1ÞE 1

(0) and
E2ÞE 2

(0) because thedriving terms F1 andF2 are now taken
into account. For example, Eq.~3a! is inhomogeneous with a
source term F1 localized in thez,0 half-space, and the so-
lutions to ~3a! and ~3b! can be found by exploiting a weak
overlap approximation. The incoming radiation field in the
linear half-space creates a rapidly decaying field in the non-
linear medium, soF2 is very small in the region where the
soliton channel is heavily localized. Similarly, because the
beam is localized in a position at least one beam width away
from the surface, thetail of its field in the linear half-space is
also very weak. Hence it is emphasized, once again, thatF1,
the driving term in~3a!, is a perturbation term.

The E1
~0! field is perturbed toE1, and its structure is as

follows. Forz.0, there will be the contribution given in Eq.
~5! plus a perturbation varying as exp[2k 2

(s)z2 igsx]. In the
absence of the incoming plane wave field, in the linear half-
space, the self-focused beam would have a wave number
g s
(0), but in the presence of this pump field it has a different

wavenumbergs . Forz,0,E1 has parts given by Eq.~5! plus
a radiation termexp[ik 1

(s)z2 igsx], caused by the beam and
a beam tail term exp[k 2

(s)(z2z0)2 igsx]. Note thatF150,

for z.0, andE2
(0)'2&k2

(s)ek2
(s)(z2z0)2 igsxEc in the z,0 re-

gion, so taking all the above points into account shows that
the fieldE1 is

E15H Ce2k2z2 igx1Qe2k2
~s!z2 igsx,

A0e
if02 ik1z2 igx1Beik1z2 igx1Geik1

~s!z2 igsx

1Dek2
~s!

~z2z0!2 igsx,

z.0

z,0,

~9!

where, at this stage,g andgs are not functions of the propa-
gation distancex. The substitution of solutions~9! into Eq.
~3a! yields the following relationships:

FIG. 2. Unperturbed field amplitude structuresuE1
~0!u2 anduE2

~0!u2,
in dimensionless units, for a single interface system.
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D522&k2
~s!Ec ,

Q52&k2
~s!

k2
~s!2 ik1

~s!

k2
~s!1 ik1

~s! e
2k2

~s!z0Ec , ~10!

G54&
k2

~s!2

k2
~s!1 ik1

~s! e
2k2

~s!z0Ec .

Also,

k2
~s!22gs

21«250, k1
~s!21gs

22«150.

The stationary stateE25E 2
(0) is given by Eq.~8! but, when

F2Þ0, the following nonstationary stateE25ce2 igs
(0)x can

be used, where

c5
&k2

~s!Ec

cosh@k2
~s!~z2z0!#

3expH 2 i E @gs2gs
~0!#dx2 ia~z2z0!J , ~11!

in whicha, z0, k 2
(s), andgs are to be determined.a is a phase

change producing asmallnoncollinearity of the channel axis
and the interface direction, andk 2

(s) is different fromk 2
(s0)

because it is thenonstationaryvalue. Equation~11! immedi-
ately yields

E ucu2dz54Ec
2k2

~s! , ~12a!

E czc* dz54Ec
2k2

~s!z0 , ~12b!

i E Fc* ]c

]z
2

]c*

]z
c Gdz58ak2

~s!Ec
2, ~12c!

and Eq.~3b! becomes

22igs
~0!

]c

]x
1

]2c

]z2
1F ucu2

Ec
2 2k2

~s0!2Gc5F2e
igs

~0!x. ~13!

The differential of Eq.~12a!, with respect tox, is

dk2
~s!

dx
5

1

4Ec
2 E Fdc

dx
c*1c

dc*

dx Gdz, ~14!

so the substitution ofdc/dx and dc* /dx, from Eq. ~13!,
gives

dk2
~s!

dx
5

i

8Ec
2gs

~0! E @F2 exp~ igs
~0!x!c*

2F2* exp~2 igs
~0!x!c#dz. ~15!

From Eqs.~2!, ~4a!, ~9!, and~11!, for the regionz.0,

F2e
igs

~0!xc*52
ucu3

Ec
2 e2k2

~s!z@Ce2 i*g dx1Qe2 i*gsdx#

3ei*gsdx1 ia~z2z0!

52
1

Ec
2 @Ceif1Q#ucu3e2k2

~s!z1 ia~z2z0!,

~16!

wheref5*(gs2g)dx. Hence, sincea is small, Eq.~15! can
be written as

gs

k2
~s!

dgs

dx
5

q2
4Ec

4gs
~0! Im@Ceif1Q#, ~17!

wherek 2
(s)dk 2

(s)5gsdgs , Im means take the imaginary part,
and

q2'E
0

`

ucu3exp~2k2
~s!z!dz'4&k2

~s!2exp~2k2
~s!z0!Ec

3,

~18!

The differential of Eq.~12b!, with respect tox, is

d

dx
~k2

~s!z0!5
1

4Ec
2 E Fdc

dx
zc*1cz

dc*

dx Gdz. ~19!

This, through the use of Eq.~13!, becomes

d

dx
~k2

~s!z0!5
i

8Ec
2gs

~0! E @F2exp~ igs
~0!x!c*

2F2* exp~2 igs
~0!x!c#z dz

1
i

8Ec
2gs

~0! E H ]

]z F S ]c*

]z
c2

]c

]z
c* D zG

2S ]c*

]z
c2

]c

]z
c* D J dz. ~20!

The integrations

E @F2exp~ igs
~0!x!c*2F2* exp~2 igs

~0!x!c#~z2z0!dz>0,

E ]

]z F S ]c*

]z
c2

]c

]z
c* zD Gdz50,

together with Eq.~12c!, reduce Eq.~20! to

k2
~s!

dz0
dx

1z0
dk2

~s!

dx
5z0

dk2
~s!

dx
1a

k2
~s!

gs
~0! ,

so that

dz0
dx

5
a

gs
~0! , ~21!

Equation~12c! gives
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d

dx
~ak2

~s!!5
i

8Ec
2 E F]c

]z

]c*

]x
1c*

]2c

]x]z
2c

]2c*

]x]z

2
]c*

]z

]c

]x Gdx. ~22!

The use of Eq.~13!, in Eq. ~22! gives

d

dx
~ak2

~s!!5
1

8Ec
2gs

~0! E F2

ducu
dz

exp~ igs
~0!x!

3expF i E ~gs2gs
~0!!dx1 ia~z2z0!Gdz

1
ia

8Ec
2gs

~0! E F2 exp~ igs
~0!x!c* dz1c.c.,

~23!

where c.c. denotes the complex conjugate.
The first term in Eq.~23! is

E F2

ducu
dz

exp~ igs
~0!x!expF i E ~gs2gs

~0!!dx1 ia~z2z0!G
52

q1
Ec
2 @Ceif1Q#, ~24!

and the second term, plus its complex conjugate, is simply
a(dk 2

(s)/dx). Equation~23!, after using Eq.~21!, therefore
reduces to

gs
~0!2

d2z0
dx2

5
2q1

4Ec
4k2

~s! Re@Ce
if1Q#, ~25!

where

q1'E
0

`

ucu2
ducu
dz

exp~2k2
~s!z!dz

' 4
3&k2

~s!3exp~2k2
~s!z0!Ec

3. ~26!

In summary, this section contains equations that govern the
dynamics of a self-consistent waveguide near an interface.
The analysis permits the determination of channel trajecto-
ries and takes into account the changes of the energy flow in
them, resulting from radiative losses and pumping. The
structure of the output field is given by Eq.~9!.

The rate of change of the energy flowPs in a self-focused
channel with propagation distancex is equal to the outflow
of energy radiated into the linear half-space. The energy flow
in a channel is

Ps5gsE
2`

`

ucu2dz54gs~gs
22«2!

1/2Ec
2, ~27!

and

dPs
dx

5
4Ec

2

gs
~0!Ags

22«2

dgs

dh
$2gs

22«2%, ~28!

III. DYNAMICS OF SELF-CONSISTENT WAVEGUIDE
CHANNELS: ZERO PUMP WAVE

In this section, the free motion of self-consistent~self-
focused! waveguide channels is investigated. The free mo-
tion occurs when the pump field is absent i.e.,A050. This
means thatB5C50, and Eqs.~17! and~25! simply become

gs
~0!2

d2z0
dx2

52
4

3

k2
~s!3~k2

~s!32k1
~s!3!

~«12«2!
exp$22k2

~s!z0%

52
]Veff

]z0
, ~29a!

whereVeff is an effective potential, and

gs
~0!gs

dgs

dx
528

k1
~s!k2

~s!5

«12«2
exp$22k2

~s!z0%. ~29b!

It is interesting that atk 2
(s)5k 1

(s) there is a change from
attraction to repulsion between the beam and the interface.
The right-hand part of Eq.~29b! is always negative, and this
corresponds to the fact thatgs is decreasing, which shows
that there is a decrease of energy flow in the channel. The
only possible physical process that provides such an outflow
of energy isemissioninto the linear medium. In fact, Eq.
~29a! describes the dynamics of an equivalent quasiparticle,
incorporating a radiation reaction, moving in the field of a
time-dependent potential~see the right-hand part!, which de-
termines the character of the interaction with the interface.

Some forms of the effective potential,Veff522
3(k2

(s)3@k2
(s)2

2k1
(s)2#)/(«12«2)exp@22k2

(s)z0# for different values ofgs
are shown in Fig. 3. Ifk 2

(s).k 1
(s), or g s

2. 1
2 («11«2)5g s*

2,
the interaction of the channel with the interface is attractive
~normal refraction!. In the opposite case, when
k 2
(s),k 1

(s)(g s
2,g s*

2), repulsion occurs~anomalous refrac-
tion!. Hence only channels with large enough energy flow
are attracted to the interface. This energy determines the
emission angle of the output radiation into the linear me-
dium. In the attractive case, the angle of emission lies in the
band,

p

2
.u.u*5sin21H F12 S 11

«2
«1

D G1/2J ,

FIG. 3. The effective potentialVeff as a function of beam posi-
tion z0, for different values ofgs . ~1! gs.g s* : attractive potential.
~2! and ~3! gs,g s* : repulsive potentials, wheregs for ~2! is larger
than for ~3!.
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In the repulsive regime, the angle of emission is determined
by the inequality

u*.u.uc .

Taking into account the fact that the propagation of radiation
in the near-surface channel is accompanied by losses, the
character of the interaction will change when the energy flow
falls below a critical value. The initial conditions~channel
position, angle of inclination to the interface, and energy!
define the power and value of the emitted energy.

In order to analyze Eqs.~29! more easily, consider the
case when the media have linear dielectric permittivities that
are quite close to each other, i.e.,«12«2!«1,«2. In this re-
gime, strong simplifications become possible. After introduc-
ing the variableh5x/g s

(0), Eqs.~20! transform to

d2z0
dh2 52

4

3

k2
~s!3~k2

~s!22k1
~s!2!

D«
exp$22k2

~s!z0%, ~30a!

dgs

dh
52

8k1
~s!k2

~s!2

gs
S k2

~s!3

D«
D exp$22k2

~s!z0%, ~30b!

whereD«5«12«2. It is immediately apparent that Eq.~30a!
can be integrated once, and the pair of equations can then be
put in the form

dz0
dh

52
1

12 F4A«12u

1AD« log
2«12«22u22AD«~«12u!

u2«2
G1const,

~31!
du

dh
52

16

D«
~u2«2!

5/2~«12u!1/2 exp~22z0Au2«2!,

whereu5g s
2. The constant of integration is determined by

u0, the initial value ofu, and (dz0/dh)0, the initial value of
the derivativedz0/dh. Hence

dz0
dh

52
1

12 H 4~A«12u2A«12u0!1AD« log

3F ~2«12«22u22AD«~«12u!!~u02«2!

~2«12«22u022AD«~«12u0!!~u2«2!
G J

1S dz0dh D
0

, ~32a!

du

dh
52

16

D«
~u2«2!

5/2~«12u!1/2exp~22z0Au2«2!,

~32b!

whereu lies in the range«2,u,«1. Equations~32! permit a
qualitative investigation, beginning with the observation that
Eq. ~32b! describes the radiative emission of energy from the
channel and is expressed by the monotonic decrease of the
parameteru.

Detailed computer investigations have been carried out of
~1! the trajectories~z0,h! of the center of the self-focused

channel waveguides, and~2! the changes in the energy,
Ps/P0 , as a function ofh, along these trajectories. Some
specimen results are displayed in Fig. 4 for a single interface
involving media in which the critical angle for total internal
reflection isuc'81.85°. If a soliton channel propagates to-
ward the interface and is eventually pushed out completely
into the linear medium, a special treatment is needed. When
the channel center is nearer to the interface than the trans-
verse extent of its localized field, the interaction with the
interface is not weak, and perturbation theory of this kind
cannot be applied. This fact has been taken into account in
the calculations reported here, and the typical initial distance
of the beam center from the interface has been set equal to,
or beyond 1/~2k 2

(s)!, i.e., well beyond the skin depth. Figure
4~a! is a plot of the guide center,z0, starting fromx50. For
u052.67,u0*5gs*

252.6602, it is the trajectories of channels
which are originally located in the nonlinear medium at
z0520 that are shown in Fig. 4~a! for different initial angle
values (dz0/dh)0 . Trajectories 1 and 2 show that the soli-
tons are attracted to the interface to begin with, but are re-
pulsed at larger values ofx after losing a part of their energy.
Trajectory 3 takes off immediately into the nonlinear me-
dium. In the latter case, the energy losses are small, so any
attraction does not change the sign of the effective potential.
The parts of the trajectories far from the interface suffer very
little radiative loss and, therefore, experience almost no in-
teraction with the interface. In more detail, for trajectories 1
and 2 there is an initial fall inPs followed by a penetration
of the channel into the nonlinear medium. When this hap-
pensPs eventually settles down to a constant value. Channel
3 takes off into the nonlinear medium, emitting very little
radiation, and, for this case,Ps remains almost constant. Fig-
ure 5 shows a beam propagation simulation corresponding to
curves 1 of Fig. 4. Figure 5~a! shows, quite dramatically,
how a nonlinear self-focused beam sets off by being attracted
to the interface. As this happens, energy is radiated into the
linear medium. This corresponds to the fall inz0, associated
with a sharp drop inPs/P0 , shown in Fig. 4. Figure 5~b! is
the surface plot, of which Fig. 5~a! is a cross section.

FIG. 4. Motion of the channels~self-consistent waveguides!
near the interface between a linear~e152.674! and a nonlinear
~«252.647! medium. The initial energy is high
(u052.666.u 0*'2.6602), and there is no incident pump wave.
The input coordinate isz0520, and the critical angle is 81.85°.
~a! Channel trajectories.~b! Energy flowPs normalized with the
energyP0 at h50, along the channel trajectories. The data are~1!
(dz0/dh)0520.02, ~2! (dz0/dh)050, and~3! (dz0/dh)050.02.
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Calculations of the motion of self-consistent waveguide
channels, near the interface, can be used to explain the giant
nonlinear Goos-Ha¨nchen effect suffered by wave beams in
reflection. The self-focused channels, excited during the fila-
mentation of the beams in the vicinity of the interface
@10,13#, become attracted to it and provide energy transfer
along the interface. This is followed by local emission into
the linear medium, and it is this phenomenon that can lead to
a giant shift of the center of gravity of reflected beams, with
respect to incident ones.

IV. DYNAMICS OF SELF-CONSISTENT WAVEGUIDE
CHANNELS INSIDE A NONLINEAR LAYER

Consider now a planar nonlinear layer of thickness 2d,
lying in the region2d,z,d, that is embedded in an infinite
linear medium. Let the nonlinear permittivity be«~uEu2!, as-
sume that its thickness exceeds the transverse dimension of
any self-consistent channel that could be formed i.e.,
2d.1/k 2

(s); and, finally, let the linear permittivity be«2.
Radiative energy losses are now possible through both
boundaries of the layer, and this can lead to an interaction

between the interfaces. Equations~30!, taking into account
both interfaces, become

d2z0
dh2 5

8

3

k2
~s!3

D«
~k2

~s!22k1
~s!2!sinh~2k2

~s!z0!exp~22k2
~s!d!,

~33a!

dgs

dh
5216

k1
~s!

gs

k2
~s!5

D«
cosh~2k2

~s!z0!exp~22k2
~s!d!.

~33b!

The presence of a second boundary in the nonlinear medium
leads to the possibility of the layer capturing a self-focused
channel. This can occur for the case of repulsing interfaces,
whenu,u0* . The direct trajectory right along the middle of
the layer is also a possibility. This type of solution is un-
stable, however, ifu.u0* . Just as in the case of the single
interface, the nature of the interaction with the interfaces of
the layer changes during the energy loss process, and it is
this that can trap channels in the nonlinear waveguide. Un-
fortunately, Eqs.~33! cannot be reduced as easily as was the
case for Eqs.~30!. This means that equations like~31! cannot
be obtained here. Nevertheless,k 2

(s)z0!x1 for channels near
the middle of layer so, for them, Eqs.~33! simplify to

d2z0
dh2 5

16

3D«
k2

~s!4~k2
~s!22k1

~s!2!z0exp~22k2
~s!d!,

~34a!

du

dh
5232

k2
~s!5k1

~s!

D«
exp~22k2

~s!d!, ~34b!

whereu, as before, is equal tog s
2. The first equation in~34!,

whenu,u0* , describes an oscillator that has a slowly vary-
ing ~alongh! local spatial, frequencyV, where

V25
16

3D«
k2

~s!4~h!@k1
~s!2~h!2k2

~s!2~h!#exp@22k2
~s!~h!d#.

~35!

FIG. 6. Spatial dynamics of the self-consistent channels inside a
layer of nonlinear material. The thickness of the layer is equal to 30
~d515!. The initial energy corresponds to a valueu052.666. The
data are~1! (dz0/dh)050.000, ~2! (dz0/dh)050.0002, and~3!
(dz0/dh)050.0004. ~a! Channel trajectories.~b! Normalized en-
ergy flow in the self-focused (Ps) channels.

FIG. 5. Beam propagation simulation for parameters associated
with curve 1 of Fig. 4. The dotted line shows the interface position.
~a! Contour plot of the intensity distribution.~b! Plot of the intensity
as a function ofx andz.
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V is the spatial oscillation frequency of the channel axis near
the middle of the layer, with theh-dependent functions
k 1,2
(s) ~h! determined by the second equation, which, inciden-

tally, does not contain valuez0, h clearly defines the propa-
gation length of self-focused waveguides in the layer, before
total emission occurs. Figure 6~a! contains numerical calcu-
lation of typical trajectories inside the layer. All the channels
displace toward one or another of the interfaces, but one of
the main results is an oscillation of the channel axis around
the middle of the layer. The energy changes, i.e., variations
in Ps along each trajectory are displayed in Fig. 6~b!.

The curves in Fig. 6 show that the self-focused channel
axis oscillates around the center of the layer. As the self-
focused beam moves away from the center,in either direc-
tion, is obvious that an interface is encountered, which then
repulses the beam. As each repulsion builds up, the self-
focused channel loses energy by radiation. This explains why
Ps/P0 declines, quite rapidly, ash increases. Figure 7 shows
a numerical simulation of the beam behavior inside the non-
linear layer. Figure 7~a! is a contour plot of the intensity
distribution, and shows the beam veering to the left or the
right. Only intensities above a sensibly, yet arbitrarily, cho-
sen low threshold are shown. This explains whyPs/P0 drops
rapidly in Fig. 6~b! as the beam appears to fade out. The

radiation emitted by the nonlinear film is weak and spread
over all x, so it does not show up in this graphical plot.

V. STABILITY OF HOMOGENEOUS STEADY
STATES

IN THE FIELD OF PLANE WAVE

The influence of the incident pump field on the dynamics
of self-focused channels will now be addressed. First, the
spatial stability~alongx! of stationary, self-consistent chan-
nels in the field of plane electromagnetic waves will be con-
sidered. The steady state in this case is a direct channel,
which is parallel to the interface@2#. In this formulation such
a solution can be obtained from Eqs.~17! and ~25!, if the
left-hand sides are set equal to zero. This takes into account
the fact that, in the stationary regime, the wave numbers of
the incident field and the self-consistent waveguide are equal
to each other, i.e.,g5gs , and

k1A0~2k2sinf01k1cosf0!1&k2~k2
22k1

2!

3exp~2k2z0!Ec50,
~36!

A0~k2cosf01k1sinf0!22&k2
2exp~2k2z0!Ec50.

Note that, sinceg5gs , k need not now be distinguished from
k(s). Solving Eq.~36! for the equilibrium phase shiftf̄0 and
the amplitude of incident waveA0, as a function of the equi-
librium channel axis positionz̄0, gives

tan~f̄0!5k2 /k1 ,
~37!

A05A2~11k2
2/k1

2!k2exp~2k2z̄0!Ec ,

Within the framework of these approximations, the expres-
sions given by~37! coincide with the exact solution of the
problem@2,10#.

Stability, with respect to perturbations of the stationary
channel position, energy flow, and phase shift can now be
analyzed. First, Eqs.~17! and ~25! are linearized in the
neighborhood of the stationary solution and this step is fol-
lowed by letting z05 z̄01dz, gs5g s

(0)1dg, and f
5f̄01df, wheredz, dg, anddf are small perturbations to
theequilibriumvalues of the channel position, wave number
and phase, respectively. If these perturbations are propor-
tional to eph, then a set of linear characteristic equations,
defining the dynamics of the channel near the steady state,
can be obtained. Note that, if any part of the system experi-
ences growth, it is unstable. In the limit ofk1@k2, the char-
acteristic equation is reduced to

@~gs
~0!p!21 4

3k2
4exp~22k2z̄0!#

3„~gs
~0!p!224k2

4exp~22k2z̄0!…50. ~38!

One root of Eq.~38! describes the instability with respect to
perturbations inenergy and phasethat grow with the incre-
ment

GE52k2
2exp~2k2z̄0!, ~39!

FIG. 7. Beam propagation simulation for parameters associated
with curve 1 of Fig. 6. The dotted lines show the layer boundary
conditions.~a! Contour plot of the intensity distribution.~b! Plot of
the intensity as a function ofx andz.
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The other root of Eq.~38! describes small oscillations of the
channelaxis, around the equilibrium position, that have a
wave number

Kc5
2

)
k2
2exp~2k2z̄0!. ~40!

Once again, it is important to remember that, even if only
one root of the characteristic equation implies growth, then
the whole system is unstable.

For the other limiting case,k150, the characteristic equa-
tion gives

~gs
~0!p!252 4

3k2
4exp~22k2z̄0!, ~41!

Only this case is stable, but it is not very important because
it corresponds to only one point. In fact, even ifk1'0 the
system is still unstable. Equation~41! describesenergy and
channel axisoscillations near a steady state, that have a wave
number

K5
2

)
k2
2exp~2k2z̄0!. ~42!

Using Eqs.~17! and ~25!, the power (Ps/P0) and the beam
center~z0! shown as curvea in Fig. 8 demonstrate the rapid
growth in channel energy governed by the increment in Eq.
~30!, and the channel axis oscillation governed by the wave
number in Eq.~40!. The energy is gained, of course, from the
pump wave. In the general case, the characteristic equation is

~gs
~0!p!41b~gs

~0!p!31c~gs
~0!p!21d~gs

~0!p!1e50,
~43!

where

b52
gs

~0!2k2
3 exp~22k2z0!

~gs
~0!21k2

2!~k1
21k2

2!
S 8k1k2z0212k124

k2
2

k1
D ,

c5
8k2

4gs
~0!2~k2

22k1
2!~gs

~0!22k2
2!exp~22k2z0!

~k2
21k1

2!~gs
~0!21k2

2!~3gs
~0!22k2

2!
,

d5
16k2

7gs
~0!4exp~24k2z0!

k1~3gs
~0!22k2

2!~gs
~0!21k2

2!
,

e52
16k2

8gs
~0!4exp~24k2z0!

~3gs
~0!22k2

2!~k2
21gs

~0!2!
.

Equation~43!, being a quartic equation, has four solutions,
which are equal to the four solutions of the following pair of
quadratic equations:

x21~b1A8y1b224c!
x

2
1S y1

by2d

A8y1b224c
D 50,

~44a!

x21~b2A8y1b224c!
x

2
1S y2

by2d

A8y1b224c
D 50,

~44b!

Herey is any one of thereal solutions of the following cubic
equation:

8y324cy21~2bd28e!y1e~4c2b2!2d250.

For «152.674 and«252.647, a plot of the four solutions of

Eq. ~43!, versusgs
(0)2, is displayed in Fig. 9. This figure

emphasizes further that, even in the general case, instability
ensues because of the appearance of real parts in the roots,
i.e., the general case has not changed the conclusion drawn
from Eq.~38!. Curvesb, shown in Fig. 8, give the growth of
the channel axisz0 and the oscillation of the channel power

Ps/P0 for gs
(0)252.67. The runaway growth ofz0 means that

the self-focused channel moves rapidly away from its initial
position and does not, on average, capture any more energy.
The results just given concerning the stability of self-
consistent waveguide channels confirm the conclusions ob-
tained in the recent paper by Alievet al. @10# that were based
upon energy considerations.

VI. DYNAMICS OF SELF-SUSTAINING
WAVEGUIDE CHANNELS IN THE FIELD

OF WIDE INCIDENT BEAMS

The results of a numerical study of the dynamics of self-
focused waveguide channels that exist in the field of incident
wide beamswill now be presented. The method is based,
once again, upon Eqs.~17! and~25!, together with the addi-
tional phase shift equation

df

dx
5gs2g. ~45!

The amplitude distribution of the beam field, at the interface,
is

A0~x!5H A0
mS 12

~x2b!2

b2 D 2, 0,x,2b

0, x,0, x.2b,

~46!

FIG. 8. Spatial channel dynamics, near the steady state, in the

field of an incident plane wave~a! k1@k2 andgs
(0)252.65.~b! One

example of the general casegs
(0)252.67. The horizontal lines~z0,

Ps/P05const! in both figures correspond to the steady states. Ini-
tially, z05 z̄0515.
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whereA 0
m is the maximum value of the field of incident

beam andb is the half-width of an illuminated spot at the
interface. The phase front of the incident beam is assumed to
be a plane. Also,gs will be allowed to have values greater
thane1 which permits a change in the nonlinear mode from
radiative to nonradiative. This can be caused by energy
transfer from the pump wave to the channel. In order to
satisfy the radiation conditions, when the sign of the expres-
sion under the square root ink 1

(s) changes in Eqs.~17! and
~25!, the substitutionk t

(s)→ ik 1
(s) is performed. This pro-

vides the exponential decrease of the correction to the field
E1

~0! , wherez→`.
Some numerical results of calculations are presented in

Fig. 10, in which the valueb, in dimensionless units, has
been set equal to 400. In Fig. 10~a! trajectories of the self-
consistent waveguide channels, with an initial value
u052.655, and an initial positionz0515, (dz0/dh)050, are
shown. In the course of the calculation,z0 must be selected
and, from a previous section on plane wave pumping, this

samez0 determines theplane wave amplitude Ā0 that would
be needed to maintain it.Ā0 has been calculated, therefore,
and used to normalizeA 0

m, as stated in the caption. It can be
seen that channel trajectories can go deep into the nonlinear
medium, which occurs either with the loss of some part of
the total energy, with some increase, or with total emission.
This is caused by phase relations between the incident field
and the field of the self-consistent waveguide. These rela-
tions change, generally, along the track of the propagation.
Depending upon the value of this phase shift, the external
field can accomplish either a positive work contribution to
the channel field, which leads to the partial compensation of
its radiative losses, or negative work, leading to an increase
of the radiative losses.

The well-known possibility@4,13# that a giant nonlinear
Goos-Hänchen shift of the intensity maximum of the re-
flected signal, through a value much greater than the incident
beam width, is strikingly shown in Fig. 11. A Goos-Ha¨nchen
shift means that if a beam is incident on a dielectric surface
then the center of the reflected beam does not appear to come
from the point of impact of the center of the incoming beam.
Nonlinearity exaggerates this effect, leading to the so-called

FIG. 9. Solutions~ordinates! of Eq. ~43! vs

gs
(0)2 ~abscissae! for «152.674 and«252.647.~a!,

~b!, ~c!, and ~d! show the real parts of the solu-
tions, because the imaginary parts of the first two
solutions are zero.~e! and~f! show the imaginary
parts of the remaining two roots.

FIG. 10. Spatial channel dynamics and normalized energy flow
along the trajectories in the field of an incident wave beam@see Eq.
~35!#, for half-widthb5400;g252.655,z0515; and (dz0/dh)050,
f050.57 ~initial phase shift!. ~1! A 0

m/Ā05k50.0. ~2! k51.2. ~3!
k51.6.

FIG. 11. The demonstration of the development of a giant non-
linear Goos-Ha¨nchen effect.b5400.g252.655.f05f̄. ~1! k50.0,
~2! k50.6. ~3! k51.2. Ar is the reflected amplitude andfr is the
phase change.
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gianteffect. In Fig. 11 curve 1 is a clear cut case, in so far as
the peak ofuAr u

2 ~reflected intensity! occurs athÞ0. Curves
2 and 3 are more dramatic, and the shift can be measured
from h50 to some average positionhÞ0, where the bulk of
the reflected energy appears to be coming from. Its explana-
tion lies in the resonant interaction of the beam field with the
excited self-focused channel in the nonlinear medium in the
near-surface region. Such interaction of self-consistent
waveguides with electromagnetic beams can be used for the
control of the channel field structure, and their behavior, in
the nonlinear medium, by the radiation fields.

VII. CONCLUSION

In conclusion, a perturbation theory is presented that de-
scribes, quantitatively, the interaction of wave fields with
radiatively damped self-focused channels near the interface
between linear and nonlinear media, under the condition of
small overlap. This approach is valid, under certain condi-
tions, for a wide range of other problems, where coupling
between radiation and quasilocalized eigenmodes must be

accounted for. By means of this theory, an investigation of a
number of effects is shown to be possible. These include the
interaction of self-consistent channels with an interface and
an incident wide electromagnetic beam. The approach given
is instructive because the mathematical theory permits an
interpretation, and an understanding, from a physical point of
view, of certain interesting phenomena. It is clear that non-
perturbative regimes will still need numerical analysis, but
thenumericalconclusions reported by Tomlinsonet al. @13#,
are, nevertheless, generated by the analysis reported here. It
is believed that the approach here will be very helpful in the
study of the stability of nontrivial nonlinear structures, and
that it will lead to a large number of applications in more
than one discipline.
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